

1

- ▶ IDLが起動したままになっていたら,一旦終了→再起動させて下さい. メモリーをクリア,カラーテーブル初期化
- IDLのコマンド検索パスの順番で、SDツールフォルダ、UDASフォ ルダがTDASフォルダより先、になっていることを確認して下さい。
- この講習で使用するSDツールはSPEDAS-j githubサイトにあります。
 https://github.com/spedas-j/erg_sd_tool/tree/iugws_201408
- またコマンドリストも以下にありますので、コピペして実行したり できるようにWebブラウザ等で開いておいて下さい。

https://github.com/spedas-j/erg_sd_tool/blob/iugws_201408/iugonet_ws_advanced_2_crib.pro

今回の講習後に自習したり辞書的に使ってもらえるように、この講習資料は網羅的に書いてあります。ただ今日の講習では時間が限られているので、RTIプロット、2D地図プロットのそれぞれ重要な箇所についてのみやります。

1 beamを3秒、扇型を一通りスキャン するのに1分かかる

6

ドップラー速度などの計測を、送信ビームに沿って75-110 range gateに分割した各ピクセル毎に行う(最近は24 Beamのレーダーも)。
 ビームを方位角方向に振ることで扇型の領域内をスキャンする。

Serg-SC plug-in のSDライブラリに集録されているSD関係のツール

<u>データ読込</u>

- erg_load_sdfit
 SuperDARNデータをダウンロード・読込
 データ加工・RTIプロット
- splitbeam
 tplot変数をビーム別に分割
- set_coords
 縦軸の座標系を変更
- loadct_sd
 カラーデーブルをセット
- get_fixed_pixel_graph 1つのピクセルの値を独立したtplot変数にする
- get_sd_ave (*)
 ある緯度,経度範囲の平均値を計算
- get_sd_lat_profile (*)
 緯度プロファイルのケオグラムを作成
- asciidump_scan
 データをアスキーダンプ

2D地図プロット環境設定

- map2d_init (旧sd_init)
 2D地図描画関係の変数初期化
- map2d_time (旧sd_time)
 2D地図プロット用の時刻をセット

- map2d_set (旧sd_map_set)
 地理座標及びAACGM座標緯度-経度グリッドを定義
- map2d_coord
 2D地図プロット用の座標系をセット
- map2d_grid 緯度-経度グリッドを点線で描画

<u>SuperDARNデータの2D地図プロット</u>

- plot_map_sdfit 5Dデータを2D地図上にプロットするall in one コマンド
- overlay_map_sdfit
 データを緯度-経度グリッド上にプロット
- overlay_map_sdfov
 レーダーの視野をフロット
- make_fanplot_pictures
 2Dプロットをまとめて作成

<u>2D地図プロット関連</u>

- overlay_map_coast
 地図(海岸線)をプロット
- overlay_map_vec(*)
 2D地図上に線を描画

(*) 今回は資料に入れられなかったので、興味のある 方はソースコード先頭のドキュメントをご覧下さい。

Hori, T., 2次元データ解析1, IUGONET解析講習会 @NIPR 8/20/2014

13

Hori, T., 2次元データ解析1, IUGONET 8/20/2014 解析講習会 @NIPR

 erg_load_sdfit を使う

 get_support_dataキーワードをセットすることで、座 標変換に必要なパラメータなども一緒に読み込む

 siteキーワードでレーダー名を指定する(以下以外もある) hok: 北海道-陸別短波レーダー ksr: King Salmon レーダー(アラスカ) sye: Syowa East レーダー(南極昭和基地) sys: Syowa South レーダー(") pyk: Pykkvibaer (Iceland East) レーダー(アイスランド) han: Hankasalmi レーダー(フィンランド)

erg_load_sdfit コマンド1つで

fitacfデータをCDFファイルにしたもの を自動ダウンロード(ローカルPC上に保存 される)

◆ 各種パラメータをtplot変数としてIDL上 に読み込む

をやってくれる

データの保存先は Windows: c:¥data Unix系: ~/dataの下

Range-Time-Intensity (RTI) プロットの作成

Hori, T., 2次元デー夕解析1, IUGONET 8/20/2014 解析講習会 @NIPR

 Backscatter power, Line-of-sight Doppler velocity (LOSV), Spectral width の時間変動をプロット

Hori, T., 2次元データ解析1, IUGONET解析講習会 @NIPR 8/20/2014

17

Beam05, 07, 09 を並べてみた。しかしカラーバーのスケールが合ってない...

Hori, T., 2次元データ解析1, IUGONET解析講習会 @NIPR 8/20/2014

18

カラーバーのスケールを変える

プロットの時間幅を変える

THEMIS> tlimit ;ウィンドウに十字スケールが出てくるので、プロットしたい時間帯の ;最初の辺に合わせて左クリック1回 ;最後の辺りに合わせて左クリック1回、で時間幅を選択できる ; 右の例では 20:30, 00:00(右端) 辺りをクリックして得られたプロット THEMIS> tlimit, /last ;時間幅を前回プロットした時の時間幅に戻す THEMIS> tlimit, /full ;時間幅をtimespan で指定してある幅に戻す THEMIS> tlimit, '2013-09-23/20:30', '2013-09-24/00:00' ;時間幅を直書きして指定することもできる

tlimit + マウスクリック tlimit, /last tlimit, /full tlimit, [開始時刻,終了時刻] を駆使することで、プロットの時間幅を自由に設定できる

よくやるのは, tlimit+マウスクリック → 狙った時刻幅を少し外 したので tlimit,/last で元に戻す → 再度 tlimit, とか. 自由自在にプロット時刻幅を変更できる.

このように拡大すると, 22 UT直後のドップラー速度が beam05→07→09と赤色主体から青色になっていることがわかる。 → 異なるbeam(つまり異なる方向)で速度が反転している!

20

▶ 電離圏エコー、地上エコーを区別してプロット

21

▶ 縦軸をRange gateから地理緯度、地磁気緯度にする

Doppler vel. [m/s]

N N N N

1つのpixelの時間変化を 線プロットで描画する

THEMIS> set_coords, 'sd_pyk_vlos_2_azim??', 'gate' ;再び縦軸をrange gateに変更

THEMIS> get_fixed_pixel_graph, 'sd_pyk_vlos_2', \$ beam=7, range_gate=18 ; beam07, range gate 18のpixelを選択

THEMIS> tplot, ['sd_pyk_vlos_2_azim07', \$ 'sd_pyk_vlos_2_bm07rg018 ']

; get_fixed_pixel_graph ; beam07, range gate 18 のpixel の値を取り出して、新しい ; tplot変数に格納する

速度の値をグラフで確認することができる

THEMIS> get_data, ' sd_cvw_vlos_8_bm17rg032', data=data

で、値を通常のIDL変数(実際には構造体)に代入することも可能

('gate') $(k_vlos_2', $)$ (180)pixelを選択 (T, 新LL) (T, 新LL) (T, T) (T, T)(T,

0000

Sep 24

2300

23

Hori, T., 2次元データ解析1, IUGONET解析講習会 @NIPR 8/20/2014

2100

Sep 23

2200

-1500

hhmm

2013

える → 値の正負をわかりやすくする

24

使うことが多い。

Hori, T., 2次元データ解析1, IUGONET解析講習会 @NIPR 8/20/2014

THEMIS>

asciidump_scan, 'sd_pyk_vlos_2'

The ascii files have been generated in /home/idl/work/IDL8_project/tmp/asci idump Program finished.

- asciidump_scanコマンドを使うと、カレント ディレクトリにasciidumpというディレクトリ が作成され、その下に各スキャン毎にアスキー ファイルが作成される。
- 多数のファイルができるので注意(1スキャン1分 → 1日で1440個!)
- 今のところLOSVデータ (sd_STN_vlos_? STNはレーダー名)のみに対応。

	C IDI - IDI	127.0.0.1:20000 - Tera Term VT	0 <mark>- ×</mark>
	ファイル(F) 編集(E) 設定(S) コントロール(O)	<u>ウィンドウ(W)_ヘルプ(H)</u>	
	sd_pyk_vlos_2_201309231110.dat*	sd_pyk_vlos_2_201309232237.dat*	^
1	sd_pyk_vlos_2_201309231111.dat*	sd_pyk_vlos_2_201309232238.dat*	
	sd_pyk_vlos_2_201309231112.dat*	sd_pyk_vlos_2_201309232239.dat*	
	sd_pyk_vios_2_201309231113.dat*	sd_pyk_vios_2_201309232240.021*	
	sd pyk vlos 2 201309231115.dat*	sd pyk vlos 2 201309232242.dat*	
	sd_pyk_vlos_2_201309231116.dat*	sd_pyk_vlos_2_201309232243.dat*	
	sd_pyk_vlos_2_201309231117.dat*	sd_pyk_vlos_2_201309232244.dat*	
	sd_pyk_vlos_2_201309231118.dat*	sd_pyk_vlos_2_201309232245.dat*	
	sd_pyk_vlos_2_201309231119.dat*	sd_pyk_vios_2_201309232246.dat*	
	sd_pyk_vios_2_201309231120.dat*	sd_pyk_vtos_2_201309232247.0at*	
	sd pvk vlos 2 201309231122.dat*	sd pyk vlos 2 201309232249.dat*	
	sd_pyk_vlos_2_201309231123.dat*	sd_pyk_vlos_2_201309232250.dat*	
	sd_pyk_vlos_2_201309231124.dat*	sd_pyk_vlos_2_201309232251.dat*	
	sd_pyk_vlos_2_201309231125.dat*	sd_pyk_vlos_2_201309232252.dat*	
X	SC_pyk_vlos_2_201309231126.dat*	sd_pyk_vlos_2_201309232253.dat*	
1	borit@curse tmp/acciidump]	SG PYK_VIOS_Z_201309232234.001*	
	# Radar code: pvk	r car. sd_pyk_vros_z_z01000z0zz1z.dat	() 🗁 🕼 👔 🔭
	# Scan time (ave. time of beams	for a scan): 20130923 221222	
	# iscat_flag 1:ionospheric echo	o, O:ground scatter, -1:no data	
	H##d_pyk_vishell_2		
	# beam range_gate LUSV[m/s]	scat_flag_MLIdir-bmdir_angleLdeg] Gla	tLdeg] GlonLdeg] MI
		339 3 66 3 22 04	
	6-0\hor1e\g3\NaNi+1wor62.36-665.2	133915 P 6618 22107	
	0 2 NaN -1 63.70 65.6	339.7 67.2 22.11	
	0 3 NaN -1 64.18 66.1	339.9 67.6 22.14	
	0 4 NaN -1 64.33 66.5	340.0 68.1 22.17	
	U 5 NaN -1 64.30 66.9	340.2 68.5 22.20	
	0 - 7 = 0 NaN -1 63 95 67 8	340.3 00.3 22.23 340 4 69 3 22 26	
	0 8 306 9 1 63 68 68 2	340.6 69.7 22.29	
	0 9 306.8 1 63.37 68.6	340.7 70.0 22.32	
	^{260-d} 10 ^{-k} -334.2 ⁻¹² 70.64 68.9	340.8 70.4 22.35	
	0 11 341.8 1 78.72 69.2	340.8 70.6 22.36	
	0 12 444.1 1 86.37 69.4	340.7 70.8 22.37	
		340.3 71.0 22.37	
	0 15 292.8 1 59.22 70.1	340.4 71.6 22.41	
	0 o 16 ond NaN -1 59.02 70.5	340.7 72.0 22.45	
	0 17 NaN -1 58.74 70.9	340.9 72.4 22.50	
	0 18 NaN -1 58.41 71.4	341.2 72.7 22.54	
	U 19 NaN -1 58.03 /1.8	341.4 73.1 22.59	×

2次元地図プロットの作成

Hori, T., 2次元データ解析1, IUGONET 8/20/2014 解析講習会 @NIPR

ある時刻の2次元スキャンのデータを、緯度・経度 グリッド(+世界地図)上に描画する

観測値の2次元空間 分布がわかる

他の観測データを重 ね描きすれば位置関 係を調べることがで きる

ある1つの時刻のデー タしかプロットするこ とができない (異なる時刻の複数のプ ロットを作る必要)

map2d_init, map2d_time は既に設定済みなので省略
THEMIS> map2d_coord, 'aacgm' ;AACGM座標を指定
THEMIS> map2d_set, /erase, /mltlabel
;AACGM緯度-LTグリッドを定義
THEMIS> overlay_map_coast ;地図を描画

THEMIS> plots, [0., 9] /24.*360., [70., 80.] ; plotsコマンドで(AACGM緯度,LT)で ; (70°, 0.0h) → (80°, 9.0h) に直線を描く

THEMIS> polyfill, \$ [17., 19., 19., 17.] /24.*360., \$ [60., 60., 70., 70.], color = 150 ; (60°,17h), (60°,19h), (70°,19h), (70°,17h) の4点で ; 囲まれる台形を 150番の色 (この場合は黄緑) で塗りつぶ す

map2d_setの他のオプションはヘッダードキュメント等を参照

map2d_coord,'geo' & map2d_set (地理座標用)

30

map2d_coord,'aacgm'&map2d_set (AACGM座標用)

- map2d_setでは↑のような緯度-経度グリッドが定義される。地理座標では、plot,(経度),(緯度)のようにすればそのままプロットできる。座標系はmap2d_coord コマンドで指定する。
- ► AACGM座標の場合、緯度はAACGM緯度、AACGM地方時を0h→0°,9h→90°,12h→180°,18h→270°のように変換 した仮想的な経度にして、plot, (AACGM緯度), (仮想的な経度) とすれば対応する場所に作図できる。
- ▶ overlay_map_???? 系のコマンドは内部で緯度,経度を上記のように計算して、点・線などを描画している。
- > つまり同じように緯度,経度を与えるようにすれば、自作のプログラムでも同様なプロットをすることができる。

;環境をセットアップする THEMIS> map2d_init

;プロットする時刻を22:10 UTに指定する THEMIS> map2d_time, 2210

;指定時刻のLOS velocityデータを描画する THEMIS> plot_map_sdfit, 'sd_pyk_vlos_2'

; coast キーワードをセットすると世界地図を重ねて描く THEMIS> plot_map_sdfit, 'sd_pyk_vlos_2', /coast

;HANデータをロードして一緒に描画する THEMIS> erg_load_sdfit, site='han', /get_support THEMIS> zlim, 'sd_han_vlos_2', -800,800

THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2', \$ 'sd_han_vlos_2'], /coast ; pykとhan両方をプロット ; 座標を地理座標に変えてプロット THEMIS> map2d_coord, 'geo' ;座標系切替コマンド THEMIS> plot_map_sdfit, , ['sd_pyk_vlos_2', \$ 'sd_han_vlos_2'], /coast THEMIS> overlay_map_sdfov, site='pyk han'

;clip キーワードをセットするとズームイン。 ;レーダー視野を外れることがあるので center_glat, ;center_glon キーワードで描画中心の地理緯度経度を指 定

;する

THEMIS> map2d_coord, 'aacgm' ;AACGMに戻す THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2', \$ 'sd_han_vlos_2'], /coast, /clip, \$ center_glat=75, center_glon=0 ; \$(ダラー)を付けると1行を分割できる

;拡大するとカラーバーがはみ出ることが多いので、手動で位置を調整するとよい。colorscalepos キーワードで指定する。

THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2', \$ 'sd_han_vlos_2'], /coast, /clip, \$ center_glat=75, center_glon=0, \$ colorscalepos=[0.05, 0.65, 0.08, 0.95]

; MLTラベルを重ね描き (mltlabelキーワード)

複数時刻プロット

THEMIS> map2d_time, 2155 THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2','sd_han_vlos_2'],/clip, /coast, center_glat=75, center_glon=0, position=[0.0,0.5,0.5,1.0], /nocolorscale

plot_map_sdfit ~ THEMIS> map2d_time, 2200 THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2','sd_han_vlos_2'],/clip, /coast, center_glat=75, center_glon=0, position=[0.5,0.5,1.0,1.0], /noerase, /nocolorscale

THEMIS> map2d_time, 2205 THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2','sd_han_vlos_2'],/clip, /coast, center_glat=75, center_glon=0, position=[0.0,0.0,0.5,0.5], /noerase, /nocolorscale

THEMIS> map2d_time, 2210 THEMIS> plot_map_sdfit, ['sd_pyk_vlos_2','sd_han_vlos_2'],/clip, /coast, center_glat=75, center_glon=0, position=[0.5,0.0,1.0,0.5], /noerase, colorscalepos=[0.05, 0.65, 0.08, 0.95]

- positionキーワードにnormal座標でのプロットの位置 を与える ([x0, y0, x1, y1])
- plot_map_sdfit はデフォルトで描画毎にウィンドウを クリアしてしまうので、2つ目以降は /noerase を付 ける
- 4番目のみカラースケールを描画する (/nocolorscale無し)

33

22:00 UT 21,55 UT Ω. ایکردنه 22:**}**0 UT 22:05 UT 2D地図プロットにすれば、スライド22のRTI プロットで見えていたflow shear構造が見易い。

THEMIS> !p.position = [0,0,1,1] ;画面分割設定を初期化

THEMIS> make_fanplot_pictures, \$ ['sd_pyk_vlos_2','sd_han_vlos_2'], \$ 2155, 2210, /clip, /coast, center_glat=75, \$ center_glon=0, prefix='pngdir/sd_pykhan_'

2Dプロットの画像ファイル(png)をいっぺんに 作成するコマンド。

第2,3引数の2155,2210の意味 → 21:55-22:10 UTの間のプロットを全て作成。

出力先は prefix キーワードで指定する。上の 例だと, pngdir というフォルダを作ってその中 に sd_pykhan_hhmm.png というファイル名で 出力 (hhmmは時刻)。

RTIプロットや2Dプロットの応用編

Hori, T., 2次元デーク解析1, IUGONET 8/20/2014 解析講習会 @NIPR

THEMIS> map2d_init THEMIS> map2d_time, '2013-09-23/22:10'

;緯度経度描画モードをオンにして、グリッドを描画する。 ; aacgm: セットするとAACGM座標で描画 ; glatc/glonc で描画する際の中心位置を指定。 ; mltlabel キーワードをセットするとMLTのラベルを描く ; erase キーワードをセットすると一度ウィンドウ内を消去 ; scale: プロットのスケール

THEMIS> map2d_coord, 'aacgm' THEMIS> map2d_set, \$ glatc=75,glonc=0, scale=35e+6, \$ /mltlabel, /erase

;指定時刻のLOS velocityデータを重ね描きする THEMIS> overlay_map_sdfit, \$ ['sd_pyk_vlos_2','sd_han_vlos_2'], \$ colorscalepos=[0.05, 0.65, 0.08, 0.95]

;世界地図を重ね描きする THEMIS> overlay_map_coast

実はplot_map_sdfit は 内部で •map2d_set •overlay_map_sdfit •overlay_map_coast (/coastの場合) を順に実行している。

- map2d_set は内部でIDL標準のmap_set を呼んでいる.
- map_set を宣言すると, plot, 経度, 緯度, …のようにして地図上に描 画できるようになる.
- map_set上に描画するような他の(自作・他作)プロットルーチンと 組み合わせることで, 複数種のデータを地図上に描画できる.

Hori, T., 2次元データ解析1, IUGONET 8/20/2014 解析講習会 @NIPR

▶ 主な変数名と中身

pwr: エコー強度

vlos: Line-of-sightドップラー速度(LOSV) spec_width: スペクトル幅 vnorth: LOSドップラー速度の地理緯度成分(北向き) veast: LOSドップラー速度の地理経度成分(東向き) (vlos|vnorth|veast)_iscat: 電離圏エコーのみのデー タ (vlos|vnorth|veast)_gscat: 地上エコーのみのデータ (vlos|vnorth|veast)_bothscat: 電離圏・地上エコー 両方のデータ elev_angle: elevation angle値

echo_flag: 電離圏エコーか地上エコーかの判定フラ グ quality: データのqualityについての情報(0: good, 1以上: poor) quality_flag: quality判定の内訳 (詳細は担当者へ)

position_tbl: 各pixelの四隅の緯度、経度値テーブル positioncnt_tbl: 各pixelの中心の緯度、経度値テー ブル

cpid: beam毎の観測モード tfreq: beam毎の周波数 noise: beam毎のノイズレベル

40

